SYNTHESIS OF NEW HETEROCYCLIC PHENOLS : 8-HYDROXY-s-TRIAZOLO[1,5-c] AND [4,3-c] PYRIMIDINES

O. ROUSSEAUX, D. BLONDEAU and H. SLIWA*

Laboratoire de Chimie Organique, Université des Sciences et Techniques de Lille, 59655 Villeneuve d'Ascq Cédex, France.

Summary: The unknown title phenols have been prepared by condensation of ethyl orthoformate with 5-benzyloxy-4-hydrazino-pyrimidine and subsequent hydrogenolysis of the protecting group.

C-nucleosides isosteres of natural purine nucleosides are expected to show potent biological activities¹. So as part of our study on new heterocyclic phenols², we have undertaken the synthesis of 8-hydroxy-s-triazolo $\begin{bmatrix} 4,3-c \end{bmatrix}$ and $\begin{bmatrix} 1,5-c \end{bmatrix}$ pyrimidines $\underbrace{1}$ and $\underbrace{2}$, from which novel nucleosides analogues could be derived.

In this aim 5-alkoxy-4-hydrazino-pyrimidines $\underline{3}$ et $\underline{4}$, prepared according to Mac Omie $\underline{\text{et}}$ $\underline{\text{al}}^3$, were condensed with orthoesters. As it is usually observed for condensation between hydrazino azines and orthoesters 4 the reaction with orthoacetate gave us the unrearranged products (i.e. the [4,3-c] isomers $\underline{5}$ and $\underline{7}$) which, upon heating at a higher temperature, suffered the Dimroth rearrangement to the [1,5-c] isomers $\underline{9}$ and $\underline{11}$. By contrast, coupling performed with ethyl orthoformate led directly to rearranged $\underline{8}$ in the case of the methyl ether $\underline{3}$, while both isomers $\underline{6}$ and $\underline{10}$ were obtained from the benzyl ether $\underline{4}^5$. Subsequent hydrogenolysis of the benzyl protecting group provided the $\underline{8}$ -hydroxy-s-triazolo [4,3-c] and [1,5-c] pyrimidines $\underline{1}$ and $\underline{2}$ which showed the expected spectral properties in IR, UV and $\underline{1}$ H NMR, and gave satisfactory mass spectrum and elemental analysis.

Structure elucidation of the above isomers was mainly based on the UV spectra which showed the differences observed in the literature⁶ for the two series a and b in the 250-290 nm range. The assigned structures were further ascertained by the ^1H NMR data shown in the Table (δ ppm/TMS, DMS0-d₆) which are consistent with those of the parent fused heterocycles⁶ (respectively 12 and 13) if one assumes shielding effects of substituents similar to those reported for benzene derivatives⁷.

Further syntheses on progress, involving replacement of methyl group by an appropriate sugar and extension of the condensation to iminoethers and thioiminoethers are expected to afford C-nucleosides of these structures.

 $\frac{3}{4} : R = CH_3$ $\frac{4}{4} : R = CH_2 \phi$

2 : R=R'=H

R=CH₃, $\underline{8}$: R'=H ; $\underline{9}$: R'=CH₃ R=CH₂ ϕ , $\underline{10}$: R'=H ; $\underline{11}$: R'=CH₃

				N-0112 10 . K	=n ; <u>11</u> . k =cn ₃
! Compounds	! H-2	! H-3	! H-5	! H-7	! R-8 !
!12 : parent a	:	9.40	9.47	7.97	7.77
! <u>1</u> : a R=R'=H	!! ! !	9.37	8.99	7.37	OH = 5.8
! <u>5</u> : a R=R'=CH ₃	!	! Me=2.75	8.96	7.54	! Me = 4.04 !
! <u>6</u> : a R=CH ₂ \$, R'=H	!	9.43	9.15	7.69	! * !
! <u>7</u> : a R=CH ₂ \(\phi , R'=CH ₃		Me=2.75	8.98	7.64	
!13: parent b	8.67	-	9.80	8.30	7.90
! <u>2</u> : b R=R'=H	8.6	_	9.35	7.75	! OH = 4.5 !
! <u>8</u> : b R=CH ₃ R'=H	8.65	-	9.50	7.98	Me = 4.09
!9 : b R=R'=CH ₃	Me=2.5	-	9.36	7.92	OMe= 4.05
! <u>10</u> : b R=CH ₂ φ,R'=H	8.65		9.50	8.07	
! <u>11</u> : b R=CH ₂ φ,R'=CH ₃	Me=2.52	- !	9.37	8.02	::
•			:	,	;

^{*} Benzyl group gave singlet at 5.4 ppm and multiplet at 7-7.5 ppm.

References and Notes

- See for example: J.J. FOX, K.A. WATANABE, R.S. KLEIN, C.K. CHU, S. Y.-K. TAM, U. RICHMAN, K. HIROTA, J.-S. HWANG, F.G. DE LAS HERAS and I. WENPEAR, in "Chemistry and biology of nucleosides and nucleotides", R.F. HARMON, R.K. ROBINS and L.B. TOWSEND, Eds, Academic Press, New York, NY 1978, 415; M.-I. LIM and R.S. KLEIN, <u>Tetrahedron</u> Letters, 1981, 22, 25.
- 2. R. RYDZKOWSKI, D. BLONDEAU and H. SLIWA, Tetrahedron Letters, 1985, 2571.
- 3. a. J.H. CHESTERFIELD, J.F.W. MAC OMIE and M.S. TUTE, J. Chem. Soc, 1960, 4590.
 - b. J.F.W. MAC OMIE and A.B. TURNER, J. Chem. Soc., 1963, 5590.
- 4. B. STANOVNIK, B. JENKO and M. TISLER, Synthesis, 1976, 833.
- 5. Isomers $\underline{6}$ and $\underline{10}$, in a 3/2 ratio, were separated by fractionnal crystallization ($\underline{6}$ in benzene-hexane and 10 in water).
- 6. D.J. BROWN and T. NAGAMATSU, Austr. J. Chem., 1978, 31, 2505.
- 7. F. SCHEINMANN in "An introduction to spectroscopic methods for the identification of organic compounds", Vol. 1, p. 65, Pergamon Press, 1970, Oxford.

(Received in France 10 May 1986)